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Notable Features of Hybrid Modes in a
Chiral-Filled Rectangular Waveguide

Abhay R. Samant and Keith W. Whites, Member, IEEE

Abstract—An analysis of hybrid modes in a rectangular wave-
guide filled with chiral material is presented in this paper. The
modal wavenumbers are computed using the finite difference
method together with Mullers root-finding algorithm. A novel
scheme is presented whereby the validity of the numerical solu-
tion is established with analytical results. Using this numerical
methodology, the existence of complex modes for a rectangular
chiral waveguide is confirmed. Other notable features such as
meode bifurcation and low frequency effects of chirality are also
discussed.

I. SOLUTION FORMULATION AND VERIFICATION

LECTROMAGNETIC wave propagation in chiral

material-filled guided wave structures, known as chiral
waveguides, has only recently received attention in the
literature [1]-[3]. In this paper, we will focus on the
surprisingly complicated response of the rectangular chiral
waveguide. Fig. | shows the geometry of this problem which
is a longitudinally invariant waveguide filled with isotropic,
homogenous. reciprocal chiral medium characterized by
constant permittivity e, permeability y. and chirality parameter
{3 through the Drude-Born-Federov constitutive equations

D=cE+e¢3VXE (1)
B =pH + pBv x H. C Q)

The z-axis of the system of coordinates is taken parallel to
the waveguide and we define the unit vectors 7, tangent to the
curve (!, and 7, normal to surface S, such that 7 x H = 2.
As explained in [4], the phenomenon of wave propagation
in a chiral-filled rectangular waveguide is governed by the
following coupled set of partial differential equations (PDE’s)
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These PDE’s are solved contingent upon the Dirichlet and
generalized Neumann boundary conditions for the perfect
electrically conducting walls

E.|ls=0 (3)
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In (7)~(10), n = \/p/e and v3 = k3 — k2 where k. are,
respectively, the wavenumbers for the right- and left-circularly
polarized eigenwaves in an unbounded chiral medium
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Since it is difficult to obtain a simple analytical solution, a
numerical approach based on the finite difference (FD) method
is used to solve the coupled set of PDE’s (3) and (4) with the

associated boundary conditions (3) and (6) [4]. This leads to
a set of equations which can be cast in the matrix form

ki

(1)

Z(k.) - T=0 (12)

where ® is the vector of F. and H, coefficients at the nodes
of the mesh within the appropriate solution space of each
PDE. Muller’s method [5] is then used to compute axial
wavenumbers, k., which force the determinant of Z to zero.

We have found that depending on the three initial guesses
for Muller’s method. these &. roots can result in either a
non-trivial or a trivial solution for ®. Physically. the values
of k. for the trivial solution correspond to the right- and
left-circularly polarized wavenumbers ki defined in (11). An
analogous behavior can be observed both numerically and
analytically for waveguides filled with simple materials where
the trivial solutions degenerate to k, as does (11) when 3 — 0.

While trivial solutions have little value in a physical setting,
they can be a powerful tool in a numerical solution. As an
illustration of this, Fig. 2 contains the plots of A, from (11)
together with k. roots found using our FD/Muller method
outlined above. It is observed that the agreement between the
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Fig. 1. Geometry of the rectangular chiral waveguide.
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Fig. 2. Dispersion diagram for the two trivial solutions of the rectangular
chiral waveguide having dimensions and constitutive parameters as shown.

two solutions is extremely close. While these &, values would
yield ® = 0 (a necessary consequence of the fact that the
cutoff frequency for each mode is zero), in fofo they are also
a complete check of the numerical methodology. That is, these
trivial solutions are a complete verification of the mathematical
formulation, the boundary conditions and sufficiency of the
mesh density used in the FD approach since all of these
are constituents in the formation of Z in (12)—whether the
solution is trivial or not.

As an overview of the remainder of the paper, in Section I
we will construct a k-3 diagram for a set of chiral waveguide
hybrid modes and subsequently confirm the existence of
complex modes for the rectangular chiral waveguide. Finally
in Section III we will study some significant features of the
dispersion diagram for a set of hybrid modes.

II. COMPLEX MODES

From the coupled set of PDE’s (3) and (4) we see that the
propagating modes in a chiral rectangular waveguide cannot
be split into individual TE® and TM” modes and are hence
referred to as hybrid modes. Using the mode tracing technique
developed in [4], [6] we construct the k,-8 trace shown in
Fig. 3. Based on the starting point at § = 0 and the mode
nomenclature scheme given in [4], [6], the corresponding
hybrid modes are labeled EHy; and HEq;.

An interesting feature of this graph is the region from g ~
0.08-0.131 m where no purely real nor purely imaginary solu-
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Fig. 3. k,— 3 diagram for the HE,, /EH; hybrid modes of the rectangular

chiral waveguide having dimensions and constitutive parameters as shown.

tion for k, exists. The solutions instead are complex numbers
and the modes corresponding to these values of k, are known
as complex modes. We have found that these modes exist in
pairs having negative complex conjugate axial wavenumbers.
This not only enforces the principle of conservation of energy
[7] but also satisfies the necessary condition for these modes
to physically exist in the problem [8]. (A detailed discussion
on complex modes can be found in [9] and the references
contained therein.)

The appearance of complex modes within a homogeneous,
chiral waveguide has been observed elsewhere. In [10], these
modes were observed in a circular chiral waveguide and in
[11] for a square waveguide. However, in [11] a first-order
perturbative solution technique was used and no validating
results were shown. The data given in this paper serves to
confirm the existence of complex modes in a rectangular chiral
waveguide through the use of a complete numerical solution.

Two other distinct regions are apparent in Fig. 3; namely,
an evanescent mode (8 < 0.08 m) and a propagating mode
(8 > 0.131 m) region. Within this latter region (as well
as the complex mode region), both the HE;; and EHy;
modes have different axial wavenumbers. However, within the
evanescent mode region these two hybrid modes apparently
have degenerate k,’s. That is, for small values of S within
the evanescent region, the numerical root searching procedure
we used has not found more than one solution identifiable
exclusively with the mode that is being traced. As § is
increased, other roots may be detected but in all such instances
we were able to ascribe these to dispersion curves associated
with other hybrid modes.

III. DISPERSION DIAGRAMS

The dispersion graphs for the HE;, and EH;; chiral wave-
guide modes for two different nonzero values of chirality
parameter are shown next in Fig. 4. Comparison with the
non-chiral case shown in the figure indicates that the cutoff
frequency is lowered by the introduction of chirality inside the
waveguide. When the frequency is further increased beyond



146

(rad/m)

k

z
imagmary -—— —= real
1
n

~ complex mode
region — p=0.08 m

-8 T ST e
1.5
o (10° rad/s)

N

Fig. 4. Dispersion diagram for the HE;;/EH:1 hybrid modes of the
rectangular chiral waveguide (having dimensions and constitutive parameters
as shown in Fig. 3) for three different 3 values.

cutoff, for each curve § = 0.08 and 7 = 0.135 m, we observe
the appearance of two curves which apparently start from the
same cutoff frequency but are split as the frequency increases.
This phenomenon, defined as mode bifurcation, is one of the
notable features of chiral waveguides and has been observed
for parallel-plate [2] and circular {3] waveguides. As was the
case in the previous section, the two hybrid modes apparently
have degenerate k.’s within the evanescent mode region.

From Fig. 4, it is also interesting to note the dwindling
effects of chirality on k_ at low values of frequency (w < 0.5 x
10” rad/s). This phenomenon is expected and can be explained
physically since for w = 0, V x E = 0 which cancels the
second term in (1) thereby nullifying the effects of chirality.
It is important to note that this low frequency behavior is an
intrinsic part of the constitutive equations (1) and (2) and is
not dependent on the dispersive behavior of the constitutive
parameters. contrary to other constitutive equations [12]. In
particular, it can be shown that S is an even function of
frequency and for chiral composite materials it has been found
that 2 can be nonzero at dc [13].
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IV. CONCLUSION

In this paper we have given examples of the relatively
complicated response of the chiral rectangular waveguide
as contrasted with those filled with simple materials. To
establish the accuracy of the numerical methodology, we
introduced a novel technique whereby the eigen-wavenumbers
of the homogeneous chiral space are compared with the trivial
numerical solutions for A, of the waveguide. Some notable
features of the HE,; and EH;; modes were presented which
included the existence of complex modes, the phenomenon
of mode bifurcation and the effects of chirality on k. at low
frequency.
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