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Features of Hybrid Modes in a

Chiral-Filled Rectangular Waveguide
Abhay R. Samant and Keith W. Whites, Member, IEEE

Abstract—An analysis of hybrid modes in a rectangular wave-
guide filled with chiral material is presented in this paper. The
modal wavenumbers are computed using the finite difference

method together with Mullers root-finding algorithm. A novel

scheme is presented whereby the validity of the numerical solu-
tion is established with analytical results. Using this numerical

methodology, the existence of complex modes for a rectangular

chiral waveguide is confirmed. Other notable features such as
mode bifurcation and low frequency effects of chirality are also
discussed.

I. SOLUTION FORMULATION AND VERIFICATION

E

LECTROMAGNETIC wave propagation in chiral

material-filled guided wave structures, known as chiral

waveguides, has only recently received attention in the

literature [1 ]–[3]. In this paper, we will focus on the

surprisingly complicated response of the rectangular chiral

waveguide. Fig. 1 shows the geometry of this problem which

is a longitudinally invariant waveguide filled with isotropic,

homogeneous, reciprocal chiral medium characterized by

constant permittivity f, permeability p, and chirality parameter

~j through the Drude-Bom-Federov constitutive equations

The z-axis of the system of coordinates is taken parallel to

the waveguide and we define the unit vectors f, tangent to the

curve C’, and ;L, normal to surface S, such that y x f~ = 2.

As explained in [4], the phenomenon of wave propagation

in a chiral-tilled rectangular waveguide is governed by the

following coupled set of partial differential equations (PDE’s)

where an e–J’= z dependence is assumed

with k = w@.
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These PDE’s are solved contingent upon the Dirichlet and

generalized Neumann boundary conditions for the perfect

electrically conducting walls

In (7)–( 10), r) = @ and ~~ = k~ – k: where kt are,

respectively, the wavenumbers for the right- and left-circularly

polarized eigenwaves in an unbounded chiral medium

k
k+=—

l+k/?”
(11)

Since it is difficult to obtain a simple analytical solution, a

numerical approach based on the finite difference (FD) method

is used to solve the coupled set of PDE’s (3) and (4) with the

associated boundary conditions (5) and (6) [4]. This leads to

a set of equations which can be cast in the matrix form

where @ is the vector of EZ and H, coefficients at the nodes

of the mesh within the appropriate solution space of each

PDE. Muller’s method [5] is then used to compute axial

wavenumbers. kZ, which force the determinant of Z to zero.

We have found that depending on the three initial guesses

for Muller’s method, these k. roots can result in either a
non-trivial or a trivial solution for @. Physically. the values

of k, for the trivial solution correspond to the right- and

left-circularly polarized wavenumbers k+ defined in (11). An

analogous behavior can be observed both numerically and

analytically for waveguides filled with simple materials where

the trivial solutions degenerate to k, as does (11) when P J O.

While trivial solutions have little value in a physical setting,

they can be a powerful tool in a numerical solution. As an

illustration of this, Fig. 2 contains the plots of k+ from (11)

together with k, roots found using our FD~uller method

outlined above. It is observed that the agreement between the
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Fig. 1. Geometry of the rectangular chiral waveguide.
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Fig. 2. Dispersion diagram for the two trivial solutions of the rectangular
chiral waveguide having dimensions and constitutive parameters as shown.

two solutions is extremely close. While these k: values would

yield @ = O (a necessary consequence of the fact that the

cutoff frequency for each mode is zero), in toto they are also

a complete check of the numerical methodology. That is, these

trivial solutions are a complete verification of the mathematical

formulation, the boundary conditions and sufficiency of the

mesh density used in the FD approach since all of these

are constituents in the formation of ~ in ( 12)—whether the

solution is trivial or not.

As an overview of the remainder of the paper, in Section II

we will construct a k.-,h’ diagram for a set of chiral waveguide

hybrid modes and subsequently confirm the existence of

complex modes for the rectangular chiral waveguide. Finally

in Section III we will study some significant features of the

dispersion diagram for a set of hybrid modes.

II. COMPLEX MODES

From the coupled set of PDE’s (3) and (4) we see that the

propagating modes in a chiral rectangular waveguide cannot

be split into individual TEZ and TMZ modes and are hence

referred to as hybrid modes. Using the mode tracing technique

developed in [4], [6] we construct the kz-~ trace shown in

Fig. 3. Based on the starting point at /3 = O and the mode

nomenclature scheme given in [4], [6], the corresponding

hybrid modes are labeled EH1l and HE1l.

An interesting feature of this graph is the region from @ %

0.08–0. 131 m where no purely real nor purely imaginary solu-
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Fig. 3. k, – /3 diagram for the HEI 1/EHI I hybrid modes of the rectangular

chlral waveguide having dimensions and constitutive parameters as shown.

tion for k, exists. The solutions instead are complex numbers

and the modes corresponding to these values of kz are known

as complex modes. We have found that these modes exist in

pairs having negative complex conjugate axial wavenumbers.

This not only enforces the principle of conservation of energy

[7] but also satisfies the necessary condition for these modes

to physically exist in the problem [t3]. (A detailed discussion

on complex modes can be found in [9] and the references

contained therein.)

The appearance of complex modes within a homogeneous,

chiral waveguide has been observed elsewhere. In [10], these

modes were observed in a circular chiral waveguide and in

[11] for a square waveguide. However, in [11] a first-order

perturbative solution technique was used and no validating

results were shown. The data given in this paper serves to

confirm the existence of complex modes in a rectangular chiral

waveguide through the use of a complete numerical solution.

Two other distinct regions are apparent in Fig. 3; namely,

an evanescent mode (~ < 0.08 m) and a propagating mode

(/3 > 0.131 m) region. Within this latter region (as well

as the complex mode region), both the HE11 and EH11

modes have different axial wavenumbers. However, within the

evanescent mode region these two hybrid modes apparently

have degenerate k. ‘s. That is, for small values of /3 within

the evanescent region, the numerical root searching procedure

we used has not found more than one solution identifiable

exclusively with the mode that is being traced. As @ is

increased, other roots may be detected but in all such instances

we were able to ascribe these to dispersion curves associated

with other hybrid modes.

III. DISPERSION DIAGRAMS

The dispersion graphs for the HE1l and EH1l chiral wave-

guide modes for two different nonzero values of chirality

parameter are shown next in Fig. 4. Comparison with the

non-chiral case shown in the figure indicates that the cutoff

frequency is lowered by the introduction of chirality inside the

waveguide. When the frequency is further increased beyond
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Fig.4. Dispersion dmgram for the HE1l/EHll hybrid modes of the
rectangular chu-al wavegulde (havurg dimensions and conshtutive parameters

as shown in Fig. 3) for three different /3 values,

cutoff, for each curve /? = 0.08 and Q = 0.135 m, we observe

the appearance of two curves which apparently start from the

same cutoff frequency but are split as the frequency increases.

This phenomenon, defined as mode bifurcation, is one of the

notable features of chiral waveguides and has been observed

for parallel-plate [2] and circular [3] waveguides. As was the

case in the previous section, the two hybrid modes apparently

have degenerate k.’s within the evanescent mode region.

From Fig. 4, it is also interesting to note the dwindling

effects of chirality on k: at low values of frequency (w ~ 0.5 x

109 rad/s). This phenomenon is expected and can be explained

physically since for w = O, V x E = O which cancels the

second term in (1) thereby nullifying the effects of chirality.

It is important to note that this low frequency behavior is an

intrinsic part of the constitutive equations (1) and (2) and is

not dependent on the dispersive behavior of the constitutive

parameters, contrary to other constitutive equations [12]. In

particular, it can be shown that /3 is an even function of

frequency and for chiral composite materials it has been found

that ~j can be nonzero at dc [13].

IV. CONCLUSION

In this paper we have given examples of the relatively

complicated response of the chiral rectangular waveguide

as contrasted with those filled with simple materials. To

establish the accuracy of the numerical methodology, we

introduced a novel technique whereby the eigen-wavenumbers

of the homogeneous chiral space are compared with the trivial

numerical solutions for k= of the waveguide. Some notable

features of the HEII and EHII modes were presented which

included the existence of complex modes, the phenomenon

of mode bifurcation and the effects of chirality on k. at low

frequency.
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